在分布式或联合的优化和学习中,不同计算单元之间的通信通常是瓶颈和梯度压缩,可广泛用于减少每个迭代方法中每个通信回合中发送的位数。有两类的压缩操作员和单独的算法利用它们。在具有有界方差的无偏随机压缩机(例如Rand-K)的情况下,Mishchenko等人的Diana算法。 (2019年),它实现了一种减少差异技术来处理压缩引入的差异,是当前的最新状态。在偏见和承包压缩机(例如TOP-K)的情况下,Richt \'Arik等人的EF21算法。 (2021)而不是实现错误反馈机制,是当前的最新状态。这两类的压缩方案和算法是不同的,具有不同的分析和证明技术。在本文中,我们将它们统一成一个框架,并提出了一种新算法,将Diana和EF21恢复为特定情况。我们的一般方法与新的,较大的压缩机类别一起使用,该类别具有两个参数,分别是偏见和方差,并包括无偏见和偏见的压缩机作为特定情况。这使我们能够继承两个世界中最好的:例如EF21,与戴安娜(Diana)不同,可以使用偏见的压缩机,例如Top-k,可以使用其在实践中的良好表现。就像戴安娜(Diana)和EF21不同一样,压缩机的独立随机性可以减轻压缩的影响,当平行工人的数量较大时,收敛速率提高。这是第一次提出具有所有这些功能的算法。我们证明其在某些条件下的线性收敛。我们的方法朝着更好地理解两个SO-FAR不同的沟通效率分布式学习的世界迈出了一步。
translated by 谷歌翻译
通常必须处理值循环并可以表示为复杂圆上的点的信号或图像,例如包裹相,角度,方向或颜色色调。我们考虑一个Tikhonov型正则化模型,以平滑或插值在任意图上定义的圆圈值信号。我们提出了将这个非凸问题作为半决赛程序的凸松弛,以及一种有效的算法来解决它。
translated by 谷歌翻译
我们考虑最小化三个凸功能的总和,其中第一个f是光滑的,第二个f是非平滑且可近的,第三个是与线性操作员L的非光滑近似函数的组成。此模板问题具有许多应用程序,有许多应用程序,有许多应用程序,,具有许多应用程序,,具有许多应用程序。例如,在图像处理和机器学习中。首先,我们为这个问题提出了一种新的原始偶算法,我们称之为PDDY。它是通过将davis-yin分裂应用于原始二重式产品空间中的单调包含的,在特定度量下,操作员在特定度量下是单调的。我们显示了三种现有算法(Condat-VU算法的两种形式) PD3O算法)具有相同的结构,因此PDDY是这种自洽的原始偶算法中的第四个丢失链接。这种表示可以简化收敛分析:它使我们能够总体上得出sublinear收敛速率,而线性收敛导致存在强凸度的存在。此外,在我们的广泛而灵活的分析框架内,我们提出了对算法的新随机概括,其中使用了Friancation降低F梯度的随机估计值,而不是真实的梯度。此外,我们作为pddy的特殊情况获得了线性收敛算法,用于在线性约束下最小化强凸功能f。我们讨论了其对分散优化的重要应用。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown great potential in the field of graph representation learning. Standard GNNs define a local message-passing mechanism which propagates information over the whole graph domain by stacking multiple layers. This paradigm suffers from two major limitations, over-squashing and poor long-range dependencies, that can be solved using global attention but significantly increases the computational cost to quadratic complexity. In this work, we propose an alternative approach to overcome these structural limitations by leveraging the ViT/MLP-Mixer architectures introduced in computer vision. We introduce a new class of GNNs, called Graph MLP-Mixer, that holds three key properties. First, they capture long-range dependency and mitigate the issue of over-squashing as demonstrated on the Long Range Graph Benchmark (LRGB) and the TreeNeighbourMatch datasets. Second, they offer better speed and memory efficiency with a complexity linear to the number of nodes and edges, surpassing the related Graph Transformer and expressive GNN models. Third, they show high expressivity in terms of graph isomorphism as they can distinguish at least 3-WL non-isomorphic graphs. We test our architecture on 4 simulated datasets and 7 real-world benchmarks, and show highly competitive results on all of them.
translated by 谷歌翻译
Over the past decade, neural networks have been successful at making predictions from biological sequences, especially in the context of regulatory genomics. As in other fields of deep learning, tools have been devised to extract features such as sequence motifs that can explain the predictions made by a trained network. Here we intend to go beyond explainable machine learning and introduce SEISM, a selective inference procedure to test the association between these extracted features and the predicted phenotype. In particular, we discuss how training a one-layer convolutional network is formally equivalent to selecting motifs maximizing some association score. We adapt existing sampling-based selective inference procedures by quantizing this selection over an infinite set to a large but finite grid. Finally, we show that sampling under a specific choice of parameters is sufficient to characterize the composite null hypothesis typically used for selective inference-a result that goes well beyond our particular framework. We illustrate the behavior of our method in terms of calibration, power and speed and discuss its power/speed trade-off with a simpler data-split strategy. SEISM paves the way to an easier analysis of neural networks used in regulatory genomics, and to more powerful methods for genome wide association studies (GWAS).
translated by 谷歌翻译
Information on the grass growth over a year is essential for some models simulating the use of this resource to feed animals on pasture or at barn with hay or grass silage. Unfortunately, this information is rarely available. The challenge is to reconstruct grass growth from two sources of information: usual daily climate data (rainfall, radiation, etc.) and cumulative growth over the year. We have to be able to capture the effect of seasonal climatic events which are known to distort the growth curve within the year. In this paper, we formulate this challenge as a problem of disaggregating the cumulative growth into a time series. To address this problem, our method applies time series forecasting using climate information and grass growth from previous time steps. Several alternatives of the method are proposed and compared experimentally using a database generated from a grassland process-based model. The results show that our method can accurately reconstruct the time series, independently of the use of the cumulative growth information.
translated by 谷歌翻译
As of 2022, greenhouse gases (GHG) emissions reporting and auditing are not yet compulsory for all companies and methodologies of measurement and estimation are not unified. We propose a machine learning-based model to estimate scope 1 and scope 2 GHG emissions of companies not reporting them yet. Our model, specifically designed to be transparent and completely adapted to this use case, is able to estimate emissions for a large universe of companies. It shows good out-of-sample global performances as well as good out-of-sample granular performances when evaluating it by sectors, by countries or by revenues buckets. We also compare our results to those of other providers and find our estimates to be more accurate. Thanks to the proposed explainability tools using Shapley values, our model is fully interpretable, the user being able to understand which factors split explain the GHG emissions for each particular company.
translated by 谷歌翻译
Robots are traditionally bounded by a fixed embodiment during their operational lifetime, which limits their ability to adapt to their surroundings. Co-optimizing control and morphology of a robot, however, is often inefficient due to the complex interplay between the controller and morphology. In this paper, we propose a learning-based control method that can inherently take morphology into consideration such that once the control policy is trained in the simulator, it can be easily deployed to robots with different embodiments in the real world. In particular, we present the Embodiment-aware Transformer (EAT), an architecture that casts this control problem as conditional sequence modeling. EAT outputs the optimal actions by leveraging a causally masked Transformer. By conditioning an autoregressive model on the desired robot embodiment, past states, and actions, our EAT model can generate future actions that best fit the current robot embodiment. Experimental results show that EAT can outperform all other alternatives in embodiment-varying tasks, and succeed in an example of real-world evolution tasks: stepping down a stair through updating the morphology alone. We hope that EAT will inspire a new push toward real-world evolution across many domains, where algorithms like EAT can blaze a trail by bridging the field of evolutionary robotics and big data sequence modeling.
translated by 谷歌翻译
Dependency hell is a well-known pain point in the development of large software projects and machine learning (ML) code bases are not immune from it. In fact, ML applications suffer from an additional form, namely, "data source dependency hell". This term refers to the central role played by data and its unique quirks that often lead to unexpected failures of ML models which cannot be explained by code changes. In this paper, we present an automated dependency mapping framework that allows MLOps engineers to monitor the whole dependency map of their models in a fast paced engineering environment and thus mitigate ahead of time the consequences of any data source changes (e.g., re-train model, ignore data, set default data etc.). Our system is based on a unified and generic approach, employing techniques from static analysis, from which data sources can be identified reliably for any type of dependency on a wide range of source languages and artefacts. The dependency mapping framework is exposed as a REST web API where the only input is the path to the Git repository hosting the code base. Currently used by MLOps engineers at Microsoft, we expect such dependency map APIs to be adopted more widely by MLOps engineers in the future.
translated by 谷歌翻译
We propose EM-PASTE: an Expectation Maximization(EM) guided Cut-Paste compositional dataset augmentation approach for weakly-supervised instance segmentation using only image-level supervision. The proposed method consists of three main components. The first component generates high-quality foreground object masks. To this end, an EM-like approach is proposed that iteratively refines an initial set of object mask proposals generated by a generic region proposal method. Next, in the second component, high-quality context-aware background images are generated using a text-to-image compositional synthesis method like DALL-E. Finally, the third component creates a large-scale pseudo-labeled instance segmentation training dataset by compositing the foreground object masks onto the original and generated background images. The proposed approach achieves state-of-the-art weakly-supervised instance segmentation results on both the PASCAL VOC 2012 and MS COCO datasets by using only image-level, weak label information. In particular, it outperforms the best baseline by +7.4 and +2.8 mAP0.50 on PASCAL and COCO, respectively. Further, the method provides a new solution to the long-tail weakly-supervised instance segmentation problem (when many classes may only have few training samples), by selectively augmenting under-represented classes.
translated by 谷歌翻译